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1. INTRODUCTION

This paper develops superapproximation and commutator properties of
discrete orthogonal projections on spaces of continuous splines on an inter-
val, for general meshes. It builds upon stability and convergence results
established in [3].

We start in Subsection 1.1 by recalling the general setting, and the nota-
tions and the results established in [3]. In Subsection 1.2 we will sketch the
main results of this paper and discuss their possible use.

1.1. General Setting and Previous Results

For some L>0, let the interval [0, L] be partitioned by ?h , defined by

?h :=[0=x0<x1< } } } <xn=L], (1)

and on this partition define for some r�2 the spline-space Sh of con-
tinuous piecewise polynomials of degree less than or equal to r&1 (or
equivalently, of order r) relative to ?h , by

Sh :=[� # C[0, L] : �| Ik
# Pr&1 , k=0, ..., n&1], (2)

where Pd is the space of polynomials of degree less than or equal to d and
Ik :=[xk , xk+1] for k # [0, ..., n&1].

To define a discrete inner product ( } , } )h on Sh , which is meant to
approximate the standard inner product ( } , } ) in some sense, we first define
a J-point quadrature rule Q on [0, 1] by

Qg := :
J

j=1

wjg(! j)t|
1

0
g(x) dx, (3)

where the weights w j are positive and the sample-points !j are strictly
increasing in [0, 1]. This gives rise to a composite quadrature rule on
C[0, L] relative to ?h . Explicitly, the composite quadrature rule is

Qh g := :
n&1

k=0

hk :
J

j=1

wjg(xk, j)t|
L

0
g(x) dx, (4)

where hk :=xk+1&xk denotes the length of Ik , and xk, j :=xk+hk!j is the
position of the j-th sample point in that sub-interval.

The positive semidefinite Hermitian sesquilinear form

( f, g)h :=Qh ( fg� ), f, g # C[0, L], (5)
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is an inner product on Sh if and only if J�r, see [3], which we will from
now on assume to be the case (except in Section 5, where we consider the
periodic case). Since the quadrature rule Qh samples only at discrete points,
( f, g)h is also defined for f, g # lh , the space of complex-valued grid func-
tions on the set of points [xk, j]. Derived from this inner product is the dis-
crete orthogonal projection Rh : C[0, L] � Sh , or Rh : lh � Sh , defined as
follows:

Rh f # Sh , (Rh f, �h)h=( f, �h)h for all �h # Sh . (6)

Sufficient conditions are known for the family of projections [Rh] to be
p-stable, a property that involves the norms | } |h, p on lh , defined as discrete
counterparts of the p-norms & }&p on Lp (0, L) by

| f |h, p :=Qh( | f | p)1�p for p # [1, �),

and

| f |h, � :=max
k, j

[ | f (xk, j)|]. (7)

On C[0, L] these are only semi-norms, but when restricted to Sh they are
indeed norms equivalent to the p-norms (see Lemma 2.2 of this paper).

The p-stability of [Rh], which, for example, is known (see [3]) to hold
for arbitrary p # [1, �] if Q is symmetric or if !0=0, !J=1 and J=r, is
the property that

&Rh f &p�C | f |h, p . (8)

As usual, C is a positive constant independent of parameters of interest
such as h :=maxjhj (and in this particular case also of p), that can take dif-
ferent values in different expressions. Other sufficient conditions are given
in Proposition 3.3 of [3].

Remark 1.1. In the special case that !0=0, !J=1 and J=r, the
operator Rh is an interpolatory operator, i.e. Rh f (xk, j)= f (xk, j) \k, j,
simplifying most of the coming analysis considerably.

The importance of p-stability lies in the fact, following from (8) together
with Rh�h=�h for arbitrary �h # Sh , that

&Rh f &f &p�&Rh ( f &�h)&p+& f&�h &p

�C | f &�h | h, p+& f&�h &p . (9)

This transforms the question of finding a priori Lp -bounds for Rh f, seen as
approximations to f, into one of approximation theory. The resulting
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theorem, which is a version of Theorem 5.1 in [3] slightly adapted for our
needs, is as follows.

Theorem 1.1. Let p # [1, �], l # [1, ..., r] and f # W 1
p(0, L) such that

f | Ik
# W l

p(Ik), k=0, ..., n&1. Suppose that [Rh] is p-stable. Then we have, if
p # [1, �),

|Rh f &f | h, p+&Rh f &f &p�C \ :
n&1

k=0

hlp
k & f (l)& p

L p(Ik)+
1�p

,

and, if p=�,

|Rh f &f | h, �+&Rh f &f &��C max
k

[hl
k & f (l)&L�(Ik)]. (10)

Other major issues covered in [3] are the approximation properties that
derive Theorem 1.1 from (9), and W 1

p(0, L)-stability of the discrete projec-
tion, as well as similar properties of discrete projection on the subspace of
Sh of functions satisfying homogeneous Dirichlet boundary conditions.

1.2. Outline of This Paper

In the following, we shall constantly use p-stability of [Rh]. We shall
prove properties for Rh that are known to be valid for its continuous coun-
terpart, which is the L2 -orthogonal projection Ph on Sh . An operator of
central importance in the coming results is the operator G of multiplication
with a fixed function g # W r

�(0, L) defined by

G : Lp (0, L) � Lp (0, L) : v [ gv. (11)

It should be noted that operators may be L2 -adjoints but not adjoints
in the discrete sense, and vice versa. Thus Ph is self-adjoint in the L2 -sense
but not in the discrete sense, since (Ph f, v)h {( f, Phv)h in general. In
contrast, Rh is self-adjoint in the discrete sense, since (Rh f, v)h=
(Rh f, Rhv)h=( f, Rhv)h , but is not self-adjoint in the L2-sense. The operator
G above is an exceptional example that is self-adjoint in both senses.
Similarly, integration by parts is impossible in the discrete case, whereas in
the continuous case it is often carried out without thought. Note also the
two statements in our main theorem, Theorem 1.2 below: it is not the case
that one is the adjoint of the other.

Theorem 1.2 (Superapproximation). Let p # [1, �] and assume that
[Rh] is p-stable. Then, for all f # C[0, L],

|(I&Rh) GRh f |h, p+&(I&Rh) GRh f &p�Ch &g$&r&1, � |Rh f | h, p .

(12)
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If [Rh] is also q-stable, where 1
p+ 1

q=1, then

|RhG(I&Rh) f |h, p+&RhG(I&Rh) f &p

�Ch &g$&r&1, � |(I&Rh) f |h, p . (13)

Remark 1.2. The smoothness requirements on the multiplier g can be
weakened in certain situations. Suppose g # W 1

�(0, L), and that
g # W r

�(0, M) and g # W r
�(M, L) for some M # (0, L). Then it will become

clear from the proof that the theorem still holds with &g$&r&1, � now
understood in the appropriate piecewise sense (as too does the later
Theorem 3.3), provided that the partition ?h is chosen so that M is always
a point of ?h . Similar remarks hold if there is a finite set M1 , ..., Ml where
the smoothness of g fails.

Each of the two operators in the above theorem, (I&Rh) GRh and
RhG(I&Rh), is the other's adjoint with respect to ( } , } )h , but not with
respect to ( } , } ). The name superapproximation is attached to the theorem
because of the factor h on the right, which does not appear if we use merely
ad hoc bounds like the submultiplicative property. We observe that if (12)
holds, then it holds equally with Rh f replaced by �h # Sh , since Rh �h=�h .
The theorem is proved in Section 3.1.

Note that RhG(I&Rh)=0 for the special case of an interpolatory
operator Rh , because in this case

(GRh f )(xk, j)= g(xk, j)(Rh f )(xk, j)= g(xk, j) f (xk, j)=(Gf )(xk, j)

for all f # C[0, L] and 0�k�n&1, 1� j�J. In general RhG(I&Rh){0,
but the second part of the theorem shows that this operator is nevertheless
``supersmall''.

Corollary 1.3 (Commutator Property). Let p # [1, �] and assume
that [Rh] is p-stable and q-stable, where 1

p+ 1
q=1. Then for all f # C[0, L],

|(GRh&RhG) f |h, p+&(GRh&RhG ) f &p�Ch &g$&r&1, � | f |h, p . (14)

Moreover, this commutator property holds for fixed p # [1, �] and all
f # C[0, L] if and only if (12) and (13) hold.

Proof. The commutator can be written as

GRh&RhG=(I&Rh) GRh&Rh G(I&Rh), (15)

where the two terms in the right-hand side are exactly the ones that appear
in the left-hand sides of (12) and (13). After taking the proper norms and
applying the triangle inequality, the commutator property follows from
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Theorem 1.2 and the p-stability property (8), combined with Lemma 2.2
below.

Conversely, let the commutator property hold, i.e. assume that (14)
holds for all f # C[0, L]. Then in particular it holds for Rh f as well as for
(I&Rh) f, which are both in C[0, L], proving (12) and (13) respec-
tively. K

Remark 1.3. The functions (I&Rh) GRh f and RhG(I&Rh) f are
mutually ( } , } )h -orthogonal for arbitrary f # C[0, L]. Thus the representa-
tion above implies

|(GRh&RhG ) f | 2
h, 2=|(I&Rh) GRh f | 2

h, 2+|RhG(I&Rh) f | 2
h, 2 . (16)

A similar commutator property was proved in [7] for smoothest peri-
odic splines on uniform grids for several Sobolev norms. It was then used
as a powerful tool in the proof of stability of qualocation methods for elliptic
boundary integral equations in [8], starting from the previously proved
stability properties for constant-coefficient equations in [6]. In practice,
though, one would often prefer to use splines of lower smoothness (like the con-
tinuous splines of this paper), and to allow arbitrary meshes, in order to have
greater flexibility and to allow local refinement. For this reason, we suggest that
the results of this paper may be useful in extending the existing theory.

After proving some basic properties of discrete inner products and pro-
jections in Section 2, we will prove Theorem 1.2 in Section 3. In that section
we will also present, in Theorem 3.3, a superapproximation result that
holds for the derivatives of the functions involved. Unfortunately, we are
not able to prove the corresponding ``dual'' result, nor the commutator
property in this setting.

In Section 4 we show an application of Theorem 1.2, by discretising the
operator G using the qualocation method. The operator G can be thought
of as the simplest possible boundary integral operator (namely the identity)
multiplied by a variable coefficient. At the same time the theory can be
interpreted as giving stability and convergence proofs for projection with
respect to a discrete weighted inner product.

Section 5 extends the results of [3], and the superapproximation results
in Theorem 1.2, to the case of periodic boundary conditions, a setting that
arises naturally for boundary integral equations on closed curves.

2. FURTHER PROPERTIES OF DISCRETE PROJECTIONS

In this section we shall prove some basic properties of discrete projec-
tions in relation to the norms defined earlier. Some of them are trivial, and
are stated without proof.
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Lemma 2.1. For all f, g # C[0, L],

(1) |( f, g)h |�| f |h, p | g|h, q , for all p, q # [1, �] such that 1
p+ 1

q=1

(2) (Rh f, g)h=( f, Rhg)h .

Lemma 2.2. Let p # [1, �]. Then there exists a positive constant C
independent of h, but which may depend on r, such that for all �h # Sh ,

C&1 &�h &p�|�h |h, p�C &�h &p . (17)

Proof. Let p # [1, �), and let �h # Sh be given. Since we assumed the
number J of quadrature points to be greater than or equal to r,
f [ Q( | f | p)1�p defines a norm on the space Pr&1 of polynomials of degree
less than or equal to r&1 on the unit interval. Since all norms on a finite
dimensional space are equivalent, there exists a positive constant C such
that for all , # Pr&1 ,

C&1 &,& p
L p (0, 1)�Q( |,| p)�C &,& p

L p (0, 1) . (18)

For each k, substitute ,(x) :=�h (xk+hkx), x # [0, 1], and multiply the
resulting inequality by hk . Summing over k and taking the p-th root derives
the estimate. A similar argument gives the proof for p=�. K

The basis of the second bound (13) in Theorem 1.2 lies in the discrete
duality property in the following Theorem 2.3, and in particular in
Corollary 2.4.

Theorem 2.3 (Discrete duality property). For p # [1, �] we have, with
1
p+ 1

q=1, that

\/h # Sh , |/h |h, p�|Rh |q sup
0{�h # Sh

|(/h , �h)h |
|�h |h, q

, (19)

where

|Rh |q := sup
| f |h, q�1

|Rh f |h, q . (20)

Note that the norm in this definition necessarily exists as a finite number.

Proof. As in the standard duality theory of weighted lp -spaces, it can
easily be shown that

|/|h, p= sup
0{� # lh

|(/, �)h |
|�| h, q

\/ # lh . (21)
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Thus

sup
|�h|h, q�1

|(/h , �h)h |= sup
|Rh�|h, q�1

|(/h , Rh �)h |= sup
|Rh�|h, q�1

|(/h , �)h |

� sup
|Rh|q |�|h, q�1

|(/h , �)h |=
1

|Rh | q
|/h | h, p .

This proves the theorem. K

Corollary 2.4. Let p # [1, �] and assume that [Rh] is q-stable, where
1
p+ 1

q=1. Then there exists a positive constant C (independent of h) such that

\/h # Sh , C |/h |h, p� sup
0{�h # Sh

|(/h , �h)h |
|�h |h, q

. (22)

Proof. This follows from Theorem 2.3 and the q-stability of [Rh],
together with Lemma 2.2. K

3. MAIN RESULTS

In this section we will present our main results. First, in Section 3.1 we
will prove the Superapproximation Theorem stated as Theorem 1.2 in the
Introduction. As remarked, this also proves the commutator property in
Corollary 1.3. Second, in Section 3.2 we will present some additional results
in W 1

p(0, L). Indeed, since we are working with continuous splines, their
weak derivatives are well-defined, and bounds on those derivatives could
turn out useful in practical applications.

3.1. Proof of the Superapproximation Theorem

We shall now prove Theorem 1.2. The first statement (12) is the easier
to prove, and follows the model of the continuous case. It does not need
the application of Corollary 2.4.

Proof of Theorem 1.2. Let p # [1, �). Taking l=r in Theorem 1.1, we
obtain

|(I&Rh) GRh f |h, p+&(I&Rh) GRh f &p

�C \ :
n&1

k=0

hrp
k &(gRh f ) (r)& p

L p (Ik)+
1�p

. (23)
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Applying Leibniz's rule for differentiation of products, and the inverse
inequality &� (l)

h &L p (Ik)�Ch&l
k &�h &L p (Ik) , where �h=Rh f, we obtain the

extra factor h by the fact that locally � (r)
h =0, as follows:

&(gRh f ) (r)&L p (Ik)�C :
r

m=1

&g(m)&L�(Ik) &(Rh f ) (r&m)&L p (Ik)

�C &Rh f &L p (Ik) :
r

m=1

hm&r
k &g(m)&L�(Ik)

�Ch&r+1
k &Rh f &L p (Ik) &g$&W�

r&1 (Ik) :
r&1

m=0

hm
k

�Ch&r+1
k &Rh f &L p (Ik)&g$&W�

r&1 (Ik) . (24)

Substitution of this last term into (23) gives

|(I&Rh) GRh f |h, p+&(I&Rh) GRh f &p�Ch &Rh f &p&g$&r&1, � . (25)

This with Lemma 2.2 proves, for p # [1, �), the first statement of the
theorem. Since (24) also holds for p=�, substituting (24) into (10) with
l=r, gives, together with Lemma 2.2, the proof for p=�.

For the second part we will make use of Corollary 2.4. Starting with an
arbitrary �h # Sh , we use ( } , } )h self-adjointness of Rh and G as well as part
(1) of Lemma 2.1 and finally the first part of this theorem to find

|(RhG(I&Rh) f, �h)h |=|(G(I&Rh) f, �h)h |= |((I&Rh) f, G�h)h |

=|((I&Rh) f, (I&Rh) G�h)h |

�|(I&Rh) f |h, p |(I&Rh) GRh�h |h, q

�Ch &g$&r&1, � |(I&Rh) f |h, p |�h |h, q . (26)

Application of Corollary 2.4 gives

|Rh G(I&Rh) f |h, p�Ch &g$&r&1, � |(I&Rh) f |h, p ,

and the result now follows with Lemma 2.2. K

3.2. Bounds for the Derivatives

We will now prove a bound similar to the first bound in Theorem 1.1,
but for the first derivative.

In this subsection we need to evaluate | g|h, p , and hence Qhg from (4),
for piecewise continuous functions g with possible jumps at the breakpoints
xk of ?h . There arises some ambiguity if !1=0 and !J=1 because in this
case xk, J and xk+1, 1 coincide geometrically. We use the convention that
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xk, J is considered logically different from xk+1, 1 and define for
k=0, ..., n&2

g(xk, J) :=g(xk+1&0) and g(xk+1, 1) :=g(xk+1+0). (27)

First notice that the proof in Lemma 2.2 of the equivalence of the norms
& }&p and | } |h, p for the space of continuous piecewise polynomials Sh holds
equally for the space of their derivatives, which are discontinuous splines of
order r&1. The following extension of Lemma 2.2 can be stated.

Lemma 3.1. Let p # [1, �] and m # [0, 1]. Then there exists a positive
constant C such that for all �h # Sh ,

C&1 &� (m)
h &p�|� (m)

h |h, p�C &� (m)
h &p . (28)

In the following we need, as in [3], the quantity _ defined by

_ :=min(Q2
1 , Q2

0)&|{|, (29)

where

Q1 :=Q(,2
1)1�2, Q0 :=Q(,2

0)1�2 and { :=Q(,1,0). (30)

Here ,1 , ,0 # Pr&1 are the unique polynomials satisfying

Q(,j ,)=0 \, # P0
r&1 , j=1, 2, (31)

,0 (0)=1, ,0 (1)=0, ,1 (0)=0, ,1 (1)=1, (32)

where P0
d is the set of polynomials of degree d or less that vanish at x=0

and x=1.
The condition _>0 is the only sufficient condition for p-stability that we

know of (see [3]), and it is satisfied for the two cases mentioned in the
Introduction, i.e. Q either symmetric or as in Remark 1.1.

Under some restrictions on the mesh, we are able to prove the analogue
of Theorem 1.1 in Theorem 3.3 below. In that theorem we use for con-
venience the convention h&1 :=hn :=0.

Definition 3.2. Let # # [0, 1] be the infimum over the family of meshes
[?h] of all numbers #(?h), where each #(?h) # [0, 1] is the largest number
such that

#(?h)�
hk&1

hk
�

1
#(?h)

, k=0, ..., n&1, (33)
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on the mesh ?h . If #=0 then we call the family [?h] unrestricted. If #=1
the family is called uniform, while in all other cases it is called locally quasi-
uniform. The number # # [0, 1] is the corresponding mesh parameter.

Theorem 3.3. Let p # [1, �]. Assume _>0, and if p>1, assume also
that [?h] is locally quasi-uniform. Moreover, if p>1 and {=% 0, define
\ :=1+_�|{| and assume that for some positive $<\ p�( p&1) and all
k, j # [0, 1, ..., n],

hk&1+hk

hj&1+h j
�C$ |k& j |. (34)

If f # W 1
p(0, L) such that f | Ik

# W l
p(Ik), k=0, ..., n&1, for some l # [2, ..., r]

then we have for p # [1, �)

|(Rh f &f )$|h, p+&(Rh f &f )$&p�C \ :
n&1

k=0

h (l&1) p
k & f (l)& p

L p (Ik)+
1�p

(35)

and for p=�

|(Rh f &f )$| h, �+&(Rh f &f )$&��C max
k

[hl&1
k & f (l)&L�(Ik)]. (36)

Before giving the proof of this theorem, we state two lemmas. The proof
of the first can be found in [3], Theorem 6.1, while the proof of the second
follows very similar lines to those in the Appendix of [3] and therefore we
omit it. In the first result Dh f (xk, j) :=h&1

k f (xk, j) for k=0, ..., n&1,
j=1, ..., J.

Lemma 3.4 [3]. Under the conditions of Theorem 3.3 we have, for all
f # lh ,

&(Rh f )$&p�C |Dh f |h, p . (37)

Lemma 3.5. Let p # [1, �], l # [2, ..., r] and f # W1
p(0, L) such that f | Ik

#
Wl

p(Ik), k=0, ..., n&1. Then there exists a spline 6 f # Sh that satisfies, for
each k=0, ..., n&1 and each m # [0, 1],

&( f &6 f ) (m)&L�(Ik)�Chl&m&1�p
k & f (l)&L p (Ik) . (38)

Proof of Theorem 3.3. Let 6 f # Sh be as in Lemma 3.5, then by the
triangle inequality and Lemma 3.4,

&(Rh f &f )$&p�&[Rh ( f &6 f )]$&p+&( f &6 f )$&p

�C |Dh ( f &6 f )|h, p+&( f &6 f )$&p . (39)
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The first term in the left-hand side of (35) we can treat similarly, using
Lemmas 3.1 and 3.4 to obtain

|(Rh f &f )$|h, p�|[Rh ( f &6 f )]$|h, p+|( f &6 f )$|h, p

�C |Dh ( f &6 f )|h, p+|( f &6 f )$| h, p . (40)

Therefore, summing gives, restricting ourselves to p # [1, �),

|(Rh f &f )$|h, p+&(Rh f &f )$&p

�C |Dh ( f &6 f )| h, p+&( f &6 f )$&p+|( f &6 f )$|h, p

=C \ :
n&1

k=0

hk :
J

j=1

wj h&p
k |( f &6 f )(xk, j)|

p+
1�p

+\ :
n&1

k=0

&( f &6 f )$& p
L p (Ik)+

1�p

+\ :
n&1

k=0

hk :
J

j=1

wj |( f &6 f )$ (xk, j)| p+
1�p

�C \ :
n&1

k=0

h1& p
k max

j
|( f &6 f )(xk, j)| p+

1�p

+\ :
n&1

k=0

hk &( f &6 f )$& p
L�(Ik)+

1�p

+C \ :
n&1

k=0

hk max
j

|( f &6 f )$ (xk, j)|
p+

1�p

�C \ :
n&1

k=0

h1& p
k & f&6 f & p

L�(Ik)+
1�p

+C \ :
n&1

k=0

hk &( f &6 f )$& p
L�(Ik)+

1�p

�C \ :
n&1

k=0

h (l&1) p
k & f (l)& p

L p (Ik)+
1�p

, (41)

where, in the last inequality, we have used Lemma 3.5. For p=�, the
proof is similar. K

We are now able to prove the first of the superapproximation results
in Theorem 1.2 for the derivatives as well. We omit the proof since it
follows the same lines as the first part of the proof of Theorem 1.2 given
in Section 3.1.

Theorem 3.6 (Superapproximation). Under the assumptions of Theorem
3.3, we have for all f # C[0, L] and with g # W r

�(0, L),

|[(I&Rh) GRh f ]$|h, p+&[(I&Rh) GRh f ]$&p

�Ch &g$&r&1, � ( |Rh f |h, p+|(Rh f )$|h, p).

An analysis similar to that of the previous section, in order to obtain
bounds for the derivative of Rh G(I&Rh) f, does not seem to be available.
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4. QUALOCATION DISCRETISATION OF THE OPERATOR G

Many spline spaces, among them Sh , have the property that

&(I&Ph) GPh& � 0 for h � 0. (42)

Here, Ph is the L2 -orthogonal projection on the spline-space, and G is the
operator defined in (11). Siegfried Pro� ssdorf remarks in [5] that a very
simple but important consequence of this property is that the Galerkin
method which discretises the action of multiplication with a function g
(with g(x){0 for all x in the domain) is convergent. Here we will show
that the same holds if qualocation is used for the approximation, using the
superapproximation properties of the discrete projection Rh that we proved
in the previous section.

Let f # L2 (0, L) be given and let g # W r
�(0, L) be such that there exist

constants g0 and g1 satisfying

0<g0�g(x)�g1 . (43)

We are interested in studying the qualocation discretisation of the simple
equation:

Find uh # L2 (0, L) such that Gu= f. (44)

The standard Galerkin discretisation in the space Sh of continuous
piecewise polynomials of degree r&1 would be the following:

Find uh # Sh such that \�h # Sh : (Guh , �h)=( f, �h). (45)

Unique solvability for the discretisation (45) above follows easily since
a( } , } ) :=(G } , } ) defines an inner product on L2 (0, L). We will not pursue
the Galerkin formulation (45) further, but turn to its qualocation variant.

The qualocation method for the simple problem (44) is as follows, where
we assume now f # C[0, L] and replace the L2 (0, L)-inner product by its
discrete counterpart:

Find uh # Sh such that \�h # Sh : (Guh , �h)h=( f, �h)h . (46)

A unique solution exists since ah ( } , } ) :=(G } , } )h defines a weighted dis-
crete inner product on Sh . In the case that g(x)= g0 is a constant function
it is clear that uh=Rh f�g0=Rhu, and p-stability and convergence follow
from the corresponding results for Rh summarised in Theorem 1.1. We will
now proceed to prove that the introduction of a non-constant g influences
stability and convergence only as a higher order perturbation.
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Proposition 4.1. Let f # C[0, L] and let g # W r
�(0, L) satisfy (43). For

some p # [1, �] assume [Rh] to be p-stable and q-stable, where 1
p+ 1

q=1. If
uh # Sh is the solution of (46), then

(1&Ch &g&�&(g&1)$&r&1, �) |uh&Rhu|h, p

�Ch &g&1&� &g$&r&1, � |u&Rh u| h, p (47)

and hence there exists a number H0>0 such that for all h<H0

|uh&Rhu|h, p�Ch |u&Rhu| h, p . (48)

Proof. Splitting the term of interest into parts to which the Super-
approximation Theorem 1.2 can be applied, we obtain for each �h # Sh

|(uh&Rh u, �h)h |=|(G(uh&Rhu), G&1�h)h |

�|(G(uh&Rh u), (I&Rh) G&1�h)h |

+|(G(uh&Rh u), RhG &1�h)h |. (49)

The first of these two terms can be bounded directly by applying the
discrete Ho� lder inequality, which is part (1) of Lemma 2.1, and then the
first superapproximation result (12) in Theorem 1.2, giving

|(G(uh&Rh u), (I&Rh) G&1�h)h |

�|G(uh&Rh u)|h, p |(I&Rh) G&1�h |h, q

�&g&� |uh&Rh u|h, p } Ch &(g&1)$&r&1, � |�h |h, q . (50)

For the second term in (49) we first use part (2) of Lemma 2.1, then the
qualocation orthogonality RhG(u&uh)=0 given by (46), then the discrete
Ho� lder inequality again, and finally the second superapproximation result
(13) in Theorem 1.2, to obtain,

|(G(uh&Rhu), RhG &1�h)h |

=|(RhG(I&Rh) u, G&1�h)h |

�|RhG(I&Rh) u|h, p |G&1�h | h, q

�Ch &g$&r&1, � |(I&Rh) u|h, p &g&1&� |�h |h, q . (51)
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Combining Corollary 2.4 and (49), (50) and (51) leads to

|uh&Rhu|h, p�C sup
0{�h # Sh

|(uh&Rhu, �h)h |
|�h |h, q

�Ch &g&� &(g&1)$&r&1, � |uh&Rhu|h, p

+Ch &g$&r&1, � &g&1&� |(I&Rh) u|h, p . (52)

The claim now follows easily. K

Corollary 4.2. Let the assumptions of Proposition 4.1 be satisfied.
Then the qualocation method for discretisation of the operator G is con-
vergent, since

|u&uh |h, p�(1+Ch) |(I&Rh) u|h, p . (53)

Finally, we point out that our results can be interpreted as stability and
convergence results for projection in the discrete weighted ah ( } , } ) inner
product. This could be of use in the study of qualocation methods with the
spline-space Sh for non-constant coefficient boundary integral equations.

5. PERIODIC BOUNDARY CONDITIONS

For completeness, we consider the theory for the case in which periodic
boundary conditions are imposed on both the continuous and discrete
function spaces. This setting, encountered when discretising boundary
integral equations on closed curves, i.e. when the curve is parametrised
onto the unit interval, is not considered in [3]. Since this is a frequent
practical application, it is important to analyse this case.

5.1. The Discrete Inner Product Revisited

First, we need to reconsider the theory of discrete inner products and
discrete projections. It turns out that the periodicity has some conse-
quences for these topics.

Let the periodic counterparts of the spaces C[0, L] and Sh be defined by

C?[0,L] := [ f # C[0, L] : f (0)= f (L)], and S ?
h=Sh & C ?[0, L]. (54)

We start with the problem of characterising ( } , } )h as an inner product on
S ?

h . In the following , is the polynomial of degree r&1 defined by

,(!) := `
r&1

j=1

(!&!j). (55)
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Proposition 5.1. The positive semidefinite Hermitian sesquilinear form
( } , } )h is an inner product on S ?

h if and only if either J�r, or J=r&1 and
one of the following conditions is satisfied:

(1) |,(0)|{|,(1)|

(2) ,(0)=&,(1){0 and n is odd.

Proof. Since S ?
h /Sh , it follows as before that ( } , } )h is an inner

product on S ?
h if J �r. Consider now the case J=r&1. Clearly, |�h | h, 2=0

for �h # S ?
h if and only if

�h (xk, j)=0, k=0, ..., n&1, j=1, ..., r&1, (56)

which implies that for each k the function �h | Ik
is a scaled multiple of the

polynomial ,. If ,(0)=,(1), or if ,(0)=&,(1) and n is even, then a non-
trivial �h # S ?

h that is zero on all quadrature points can be constructed by
glueing continuously together some scaled copies of ,. On the other hand,
if |,(0)|=% |,(1)| the nodal values of scaled copies of , that are being glued
together have strictly monotone absolute values, which cannot lead to a
�h for which �h (0)=�h (L). A similar argument applies in the case
,(0)=&,(1){0 and odd n. If J�r&2, there exists a polynomial / # Pr&1

that is zero on the quadrature points and for which /(0)=/(1)=:{0
(namely an interpolant on the two values : and the J values zero), which
implies that ( } , } )h is not an inner product by arguments similar to those
above. K

From the characterisation in Proposition 5.1 one can easily derive condi-
tions for special cases. Some of them are collected in the following
corollary.

Corollary 5.2. Let J=r&1. Then ( } , } )h is an inner product if Q

(1) is unsymmetric and exactly one of the endpoints [0, 1] is a
quadrature point

(2) is unsymmetric, but symmetric around 1
2(!1+!J)

(3) is symmetric, with !1=% 0 and n(r&1) odd.

It is not an inner product if Q

(4) is a symmetric rule and r is odd

(5) is a symmetric rule and both n and r are even

(6) is a rule with !1=0 and !J=1.
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For r=2 and r=3, condition (1) in Proposition 5.1 can easily be
characterised in terms of the quadrature points ! j as in the following
proposition. For greater values of r the characterisations are less trivial.

Proposition 5.3. For r=2 and r=3, the polynomial , in (55) satisfies
|,(0)|=|,(1)| if and only if

(1) for r=2: !1= 1
2

(2) for r=3: !1 # [0, 1
2) and !1+!2=1.

5.2. The p-Stability in the Periodic Case

In this subsection we assume that ( } , } )h is an inner product on S ?
h , and

define the periodic counterparts R?
h of Rh by

R?
h f # S ?

h , (R?
h f, �h)h=( f, �h)h for all �h # S ?

h . (57)

Throughout this subsection we assume that the domain of definition of R?
h

is the space of periodic functions C?[0, L], which simplifies some
arguments in the sequel. The family of projections [R?

h] has similar
stability properties to [Rh], but there are also some differences. Let us
define the periodic spline functions [�k], using the functions ,0 and ,1

from (31) and (32), such that

�0 (x) :={,0 \x&x0

h0 + ,

,1 \x&xn&1

hn&1 + ,

x # [x0 , x1]

x # [xn&1 , xn]= , (58)

�k (x) :={,1 \x&xn&1

hn&1 + ,

,0 \x&xk

hk + ,

x # [xk&1 , xk]

x # [xk , xk+1]= , k=1, ..., n&1, (59)

and zero elsewhere on [0, 1]. (Note that ,0 and ,1 are well-defined if ( } , } )h

is an inner product, because Proposition 5.1 ensures that in this case there
are at least r&2 quadrature points in the interior). As in the former case,
p-stability can be proved by showing that the scaled Gram matrix
A?

h=(A?
kl), defined by

A?
kl :=

(�k , �l)h

hk&1+hk
, k, l=0, ..., n&1, (60)
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(with h&1 now given by h&1 :=hn&1) is uniformly in h strictly row
diagonally dominant. By strict row diagonal dominance we mean that
there exists _0>0 such that

_?
h, k :=A?

kk& :
n&1

l=0, l{k

|A?
kl |�_0 , k=0, ..., n&1. (61)

As in [3], it follows from this property (see in particular Theorem 4.4 of
[3]) that R?

h is p-stable for arbitrary p # [1, �].
On observing the essentially tridiagonal nature of the matrix A?

h , it
follows that

_?
h, k=:kQ2

1+(1&:k) Q2
0&|{|

= 1
2Q( |,1&,0 sgn {|2)+(:k& 1

2)(Q2
1&Q2

0), (62)

where Q1 , Q0 and { are as in (30), and

:k :=
hk&1

hk&1+hk
, k=0, ..., n&1. (63)

(As in [3] we define sgnt :=1 or &1 for t�0 or t<0, respectively.)
If the family of meshes [?h] is unrestricted, the :k can attain any value

between zero and one. In this case it follows from (61) and (29), rewritten
as

_=min(Q2
1 , Q2

0)&|{|= 1
2Q( |,1&,0 sgn {| 2)& 1

2 |Q2
1&Q2

0| , (64)

that _ is a sharp lower bound for the _?
h, k . Therefore, for the case of

unrestricted meshes the condition _>0 we used for the non-periodic case
is still the proper sufficient condition to use in the periodic case. The
uniform lower bound for the _?

h, k can, however, be made larger than _ if
we impose a mesh condition (see Theorem 5.4 below). This is an important
difference from the non-periodic case: in that case the minimum of the
corresponding numbers _h, k is always equal to _ because of the fact that
:0=0 and :n=1 (the reader might wish to interpret the non-periodic case
as a special case of the periodic case in which an interval of length zero
forms the connection between the endpoints of the interval). In the periodic
case this will sometimes allow us to prove stability for suitably restricted
mesh sequences even when _�0.
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Theorem 5.4. Let p # [1, �]. Let # # [0, 1] be the mesh parameter of a
given family [?h] of meshes, and define the number _# by

_# :=_+
#

1+#
|Q2

1&Q2
0|

=
1
2 _Q( |,1&,0 sgn {| 2)&

1&#
1+#

|Q2
1&Q2

0|& . (65)

If _#>0 then property (61) holds with _0 :=_# .

Proof. The assumption on the mesh ratios (33) implies that for all
meshes and all k,

#
1+#

�:k�
1

1+#
. (66)

Using (61) and (64), it holds therefore that

_?
h, k&_�\1

2
& } :k&

1
2 }+ |Q2

1&Q2
0 |�

#
1+#

|Q2
1&Q2

0| , (67)

So _# is indeed a lower bound for the _?
h, k . The second expression for _#

can easily be derived using (64). K

Corollary 5.5. The family of projections [R?
h] is p-stable for unrestricted

meshes if any one of the following conditions holds:

(1) J�r and {=0

(2) J�r and Q1=Q0

(3) J�r and Q is symmetric

(4) J�r and Q is a quadrature rule with algebraic degree of precision
at least 2r&2

(5) J=r and !1=0, !J=1.

The family [R?
h] is p-stable for locally quasi-uniform meshes if any one of

the following conditions holds:

(6) J=r&1 and either !1=0 and !J<1, or !1>0 and !J=1
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(7) J=1, r=2 (the piecewise linear case) and 0<min[ !1

1&!1
,
1&!1

!1
]

<#, !1 { 1
2 , where # is the mesh parameter.

The family [R?
h] is p-stable for uniform meshes if any one of the following

conditions holds:

(8) J�r

(9) J=r&1 and the polynomial in (55) satisfies |,(0)|{|,(1)|.

Proof. In cases (1)�(5) we show that _>0, from which follows, by
Theorem 5.4, that (61) is satisfied with _0=_, i.e. with no restriction on the
mesh sequence.

First, assume (1) to hold. Then it follows from (64) that

_=min(Q2
1 , Q2

0)>0,

because , [ - Q(,2) defines a norm on Pr&1 (cf. the proof of Lemma 2.2).
Keeping this in mind, assume (2) holds. From the second expression in

(64) this implies

_= 1
2Q( |,1&,0 sgn {| 2)=: _2 , (68)

which is positive because ,1&,0 sgn { is not the zero function since it has
the value 1 at the argument 1.

If (3) holds, i.e. if Q is symmetric, then ,1 (x)=,0 (1&x), from which it
follows that Q1=Q0 , so that this case is covered by case (2).

If (4) holds then Q integrates exactly ,i , for i=1, 2 and , # Pr&1 ,
from which it follows that the defining condition for ,i , that Q(,i ,)=0
\, # P0

r&1 , is satisfied with the quadrature sum replaced by an integral.
From this and the conditions on ,0 and ,1 at 0 and 1 it follows that
,1 (x)=,0 (1&x), and hence

|
1

0
,1 (x)2 dx=|

1

0
,0 (x)2 dx,

implying Q1=Q0 , so that again this case is covered by (2).
In case (5) there are exactly r&2 interior quadrature nodes !2 , ..., !r&1 .

Let [* j : j=2, ..., r&1] # Pr&3 be the fundamental Lagrange polynomials
for the r&2 interior nodes, that is

* j # Pr&3 , * j (! j $)=$ jj $ , j, j $=2, ..., r&1.
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It follows that x(1&x) * j (x) # P0
r&1 , thus from the defining condition for

,i we have

Q(x(1&x) * j ,i)=0, j=2, ..., r&1, i=0, 1.

Remembering that * j is a fundamental Lagrange polynomial, we see that
x(1&x) * j,i vanishes at all interior points except ! j as well as at both
endpoints, so that the last result implies (since w j>0)

,i (! j)=0, j=2, ..., r&1, i=0, 1,

thus in this case ,i must vanish at each interior node ! j . Since the product
,1 ,0 also vanishes at x=0 and x=1, it follows that {=0. The result is
now obtained from case (1).

For the proof of (6), supposing the first case to hold (i.e. !1=0,
!r&1<1) we introduce a related new r-point quadrature rule

Q� g :=w1 (g(0)+ g(1))+ :
r&1

j=2

w j g(! j). (69)

This means that the additional quadrature point !r :=1 with weight
wr :=w1 is adjoined. With the aid of Q� a new discrete inner product [ } , } ]h

and related norm [ } ]h, p is defined on S ?
h . By virtue of the choice of the

weights and the mesh assumption there exists a positive constant C such
that the equivalence of norms

C&1 | f | h, p�[ f ]h, p�C | f | h, p , f # S ?
h , (70)

holds. Let R� ?
h denote the discrete projection corresponding to [ } , } ]h . It is

easy to verify that R� ?
h=R?

h since both mappings determine the interpola-
tion in S ?

h . The family [R� ?
h] is p-stable according to case (5) and the

desired stability property then can be inferred with the aid of (70). The
proof of the other case in (6) is similar.

(Interestingly, it is easy to see for case (6) that mesh sequences exist for
which the property (61) is not achieved for any _0>0. However, the condi-
tion in (61) is not necessary, only sufficient, so there is no contradiction).

For case (7) we have r=2 and J=1, in which case it is easy to see that
,0 (x)=1&x, ,1 (x)=x. Let ! :=min[!1 , 1&!1]. Then it follows from
(64) (if we choose w1=1), that

_=!2&!(1&!)=!(2!&1)�0. (71)
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Applying Theorem 5.4 gives

_#=_+
#

1+#
|Q2

1&Q2
0|

=!(2!&1)+
#

1+#
(1&2!)

=(1&2!) \ #
1+#

&!+ . (72)

Clearly, _#>0 if and only if #>
!

1&! . The condition !1 { 1
2 is needed for

( } , } )h to be an inner product on S ?
h .

Now assume (8) holds. For uniform partitions we have #=1, and there-
fore, combining (64) and (68), we find that _#=_2 , which we have already
shown above to be positive if J�r.

In the case (9), in which J=r&1 and the partition is uniform, again we
have #=1 and _#=_2 . This time the proof that _2>0 is indirect, since
, [ - Q(,2) does not now define a norm on Pr&1 . Assume _2=0. Then
by (68) we see that /(!) :=,1 (!)&,0 (!) sgn { satisfies

/(!j)=0, j=1, ..., r&1. (73)

Since / # Pr&1 , it follows that / is a nontrivial multiple of , in (55).
Moreover, due to (32) / satisfies |/(0)|=|/(1)|=1. This contradicts the
assumption. K

Remark 5.1. All assertions in Corollary 5.5 still hold if as domain of
definition of R?

h the space lh of grid functions is taken. The proof for this
case requires only a slight change in the argument showing part (6).

In the case of J=r&1 quadrature points the norm equivalence stated in
Lemma 2.2 in general does not hold anymore. Since Lemma 2.2 is used at
several places in the course of the paper it is important to have the follow-
ing

Corollary 5.6. If the family [R?
h] is p-stable then there exists a

positive constant C such that for all �h # S ?
h

C&1 &�h &p�|�h |h, p�C &�h &p . (74)

Proof. The first inequality is obtained by applying the stability
inequality for R?

h to elements in S ?
h . The second inequality is implied by the

corresponding one in (17) because the norm with r&1 quadrature points
is not larger than one with one additional point. K
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Remark 5.2. S ?
h is a space of periodic splines with multiple knots.

Collocation methods for this kind of spline on uniform grids have been
studied in [4]. In our case the multiplicity is M=r&1. Explicit conditions
for stability are given in [4] for double knots, which corresponds to r=3
in our case. Assuming the stability conditions for [R?

h] in Theorem 5.4 to
hold with J=r&1, we have in effect derived the stability of collocation for
the operator G in Section for general r and M=r&1. In the case r=2 and
J=1 the excluding condition in (1) in Proposition 5.3 is well known.

Remark 5.3. If condition (3) in Corollary 5.2 is assumed to hold then
( } , } )h is an inner product and R?

h is well-defined. However, the example in
[3], Proposition 7.4, can be used to prove that in this case for all
p # [1, �] the family [R?

h] is not p-stable.

The results in Section 3 are essentially based on the p- and q-stability of
[Rh]. The proofs go through with Rh replaced by R?

h as long as ( } , } )h is
an inner product on S ?

h , which was assumed to be the case in this subsec-
tion. Consequently, the superapproximation result (12), the commutator
property (14) and Theorem 3.6 are also valid in the periodic case. For
completeness we will explicitly state their periodic versions. The multiplier
function g in these results is assumed to satisfy the condition

g # W r
�(0, L) & C?[0, L]. (75)

The periodicity of the function g is needed here, because in the proofs the
counterpart of Theorem 1.1 with R?

h in place of Rh is used which requires
the assumption f # W 1

p(0, L) & C ?[0, L] to hold.

Theorem 5.7. Let p # [1, �] and assume that [R?
h] is p-stable. Then,

for all f # C?[0, L],

|(I&R?
h) GR?

h f | h, p+&(I&R?
h) GR?

h f &p�Ch &g$&r&1, � |R?
h f | h, p . (76)

If [R?
h] is also q-stable, where 1

p+ 1
q=1, then

|R?
h G(I&R?

h) f |h, p+&R?
h G(I&R?

h) f &p

�Ch &g$&r&1, � |(I&R?
h) f | h, p . (77)

Corollary 5.8. Let p # [1, �] and assume that [R?
h] is p-stable and

q-stable, where 1
p+ 1

q=1. Then for all f # C ?[0, L],

|(GR?
h&R?

h G) f |h, p+&(GR?
h&R?

h G) f &p

�Ch &g$&r-1,� | f |h, p . (78)
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Theorem 5.9. Let p # [1, �]. Let # be the mesh parameter of the family
[?h] of meshes and assume that _#>0. If p>1 assume #>0, and if also
{=% 0 define \ :=1+_#�|{| and assume that for some positive $<\ p�( p&1)

and all k, j # [0, 1, ..., n],

hk&1+hk

hj&1+hj
�C$ |k& j |. (79)

Then for all f # C?[0, L] we have

|[(I&R?
h) GR?

h f ]$|h, p+&[(I&R?
h) GR?

h f ]$&p

�Ch &g$&r&1, � ( |R?
h f | h, p+|(R?

h f )$|h, p).

Remark 5.4. In Theorem 5.7, Corollary 5.8 and in Theorem 5.9 the
assumption that f # C?[0, L] can be relaxed to f # C[0, L].
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